SUBJECT CODE NO:- P-140 FACULTY OF ENGINEERING AND TECHNOLOGY S.E.(ALL-BRANCHES) Examination MAY/JUNE-2016 Engineering Mathematics - III (Revised)

[Time: Three Hours]

"Please check whether you have got the right question paper."

- N.B
- i) Q.No.1 and Q.No.6 are compulsory.
- ii) Solve <u>any two</u> out of Q.2, 3, 4 & 5.
- iii) Solve any two out of Q.7, 8, 9 & 10.
- iv) Use of non-programmable calculator is allowed.
- v) Figures to the right indicate full marks.
- vi) Assume suitable data, if necessary.

Section A

Q.1 Solve any five.

- a) Find C.F. of $(D^2 2D + 4)^2 y = 0$
- b) Solve $(D^4 1)y = 0$
- c) Find P.I of $(D^2 2D + 2)y = x$
- d) Find P.I of $(D^2 + \eta^2)x = k \cos(\eta t + \alpha)$
- e) Find the probability of getting 4 heads in 6 tosses of a fair coin.
- f) Find the area under the normal curve between Z = -0.46 and Z = 2.21
- g) Find the median of 6, 8, 9, 10, 11, 12, and 13.
- h) The first three moments about the value 2 of the variable are 1, 16, -40. Find:- i) Mean, ii) Variance

Q.2 a) Solve
$$(D^2 + 3D + 2)y = \cos^2 x$$
.

b) Calculate standard deviation and C.V for the following data.

Class	5-10	10-15	15-20	20-25	25-30	30-35	35-40	
Frequency	6	8	17	21	15	11	2	

c) An electric circuit consists of an inductance L, a condenser of capacitance C and e. m. f $E = E_0 \cos wt$ 05 so that the charge Q satisfies the differential equation. $\frac{d^2Q}{dt^2} + \frac{Q}{L_c} = \frac{E}{L} if w^2 = \frac{1}{L_c}$ And initially at t=0, Q=Q₀ and i=i₀. Find the charge at any time t.

Q.3

a) S	Solve $(x + 1)^2 \frac{d^2 y}{dx^2} + (x + 1) \frac{dy}{dx} + y = 2 \cos[\log(x + 1)].$	
------	---	--

b) Find Karl Pearson's coefficient of skewness for

Class	17.5-20.5	20.5-23.5	23.5-26.5	26.5-29.5	29.5-32.5			
Frequency	10	16	192	299	194			

c) Wireless sets are manufactured with 25 soldered joints each on the average 1 joint in 500 is defective. 05
 How many sets can be expected to be free from defective joints in a consignment of 10000 sets?

10

[Max Marks:80]

05 05

05

05

- a) Solve by method of variation of parameters $(D^2 2D + 2)y = e^x tanx$
 - b) In a sample of 1000 cases, the mean of a certain test is 14 and standard deviation is 2.5. Assuming the 05 distribution to be normal, find.
 - 1) How many students score between 12 and 20?
 - 2) How many score above 12?
 - 3) How many score 18?
 - c) The results of measurement of electric resistance R of a copper bar at various temperature t⁰C are listed 05 below.

t:	19	25	30	36	40	45	50
R:	76	77	79	80	82	83	85

Find a relation R = a + bt when a and b are constants to be determined by you.

Q.5 a) The deflection of a strut of length I with one end (x=0) built in and the other supported end subjected to 05 end thrust P, satisfies the equation $\frac{d^2y}{dx^2} + a^2y = \frac{a^2R}{P}(l-x)$ Prove that deflection curve is $Y = \frac{R}{P}(\frac{\sin ax}{dx^2} - l\cos ax + l - x)$, where al = tan al.

b) The first four moments about the working mean 28.5 of a distribution are 0.294, 7.144, 42.409 and
$$05$$
 454.98. Calculate the moments about mean. Also find β_1 and β_2

c) Solve
$$r \frac{d^2y}{dr^2} + \frac{dy}{dr} - \frac{y}{r} = ar^2$$

Section B

Q.6 Solve any five.

- a) Find the first approximate value of the root (ie, x_1) by Newton-Raphson method for $x e^x 2 = 0$.
- b) Find the values of x, y, z in the first iteration by gauss seidel method.
 20x+y-2z=17
 3x+20y-z=-18
 2x-3y+20z=25
- c) Find f(7) for data

Х	5	6	9
F(x)	12	13	14
0.			

- d) Find out \overline{F} if $\overline{F} = (y^2 cosx + z^3)i + (2y sin x 4)j + (3xz^2 + 2)k$
- e) Show that $\overline{F} = (x + 3y)i + (z 3y)j + (x + 2z)k$ is a solenoidal vector function.
- f) Find the work done in moving a particle in the force field $\overline{F} = 3x^2i + (2xz y)j + zk$ along straight line from A(0, 0, 0) to B(2, 1, 3)
- g) Find $\nabla\left(\frac{1}{\sqrt{r}}\right)$
- h) Write statement of Green's theorem.
- a) Find by Newton's Raphson method the real root of the equation. 05 $x e^x = \sin x$ (Correct to 3 decimal places). 05
 - b) Find the directional derivative of $\emptyset = e^{2x-y+z}$ at (1, 1, -1) in the direction of the tangent to the curve 05 x=a cost, y=a sint, z=at at $t = \frac{\pi}{4}$.
 - c) A vector field is given by $\overline{F} = \sin y \, i + [x(1 + \cos y)]j$. Evaluate the line integral over a circular path given by $x^2 + y^2 = a^2$, z=0 05

Q.7

10

05

05

Q.8 a) Solve the following equations by gauss seidel method. The answer should be correct to 3 significant 05 digits.
 9x+2y+4z=20

X+10y+4z=6 2x-4y+10z=-15

Q.9

b) Verify the GREENS theorem to evaluate the line integral $\int_c (2y^2 dx + 3x dy)$. Where C is the boundary of the closed region bounded by y=x and $y=x^2$. 05

c) Prove that
$$\nabla^2(r^\eta) = \eta(\eta+1)r^{\eta-2}$$

- a) Solve by Euler's modified method. $\frac{dy}{dx} = \frac{y-x}{y+x}, y(0) = 1 \text{ find } y(0.1) \text{ (take h=0.1)}.$
 - b) Use Lagrange's interpolation formula to find y(2) for data given below.

Х	1	3	4	6
Y	-3	9	30	132

- c) Apply stoke's theorem to evaluate $\oint_C 4y \, dx + 2z \, dy + 6y \, dz$. Where C is inter section of curves $x^2 + y^2 + z^2 = 6z$ and z = x + 3
- Q.10 a) Find y'(50) for the data

X:	50	55	60	65				
Y:	1.6990	1.7404	1.7782	1.8129				

- b) Using Runge-Kutte IVth order method find the solution of $\frac{dy}{dx} = 0.25 y^2 + x^2, y(0) = -1.$ find y(0.1), take h=0.1
 - c) Find $\iint \overline{F} \cdot \hat{\eta} \, ds$ where $\overline{F} = (2x + 3z)i - (xz + y)j + (y^2 + 2z)k$ And S is the surface of the sphere having centre (3, -1, 2) and radius 3.

05

05

05

05

05

05

05